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Liviu-Daniel Ştefan1, Mihai Gabriel Constantin1, Mihai Dogariu1, Vassili

Kovalev3,4, Hendrik Damm5, Johannes Rückert5, Asma Ben Abacha6, Alba G.
Seco de Herrera7, Christoph M. Friedrich5, Louise Bloch5, Raphael Brüngel5,
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Abstract. This paper presents an overview of the ImageCLEF 2025
lab, which was organized within the Conference and Labs of the Evalu-
ation Forum – CLEF Labs 2025. ImageCLEF is an ongoing evaluation
event that started in 2003, promoting the evaluation of technologies for



annotation, indexing, and retrieval of multimodal data and aiming to
provide access to large collections of data across a veriety of scenarios,
domains and contexts. In 2025, the 23rd edition of ImageCLEF consists
of four main tasks: (i) the Medical task, comprised of four sub-tasks,
approaching a wide array of problems in the medical field, like concept
detection, caption prediction, explainability assessment in radiology im-
ages, evaluating the veracity of GAN-generated 3D CT scans, providing
a segmentation and answers to close-ended questions regarding derma-
tology images, or visual question answering and synthetic image genera-
tion involving gastrointestinal images, (ii) a new Multimodal Reasoning
task, involving answering multiple-choice questions in 13 different lan-
guages, covering a wide range of subjects and difficulty levels , (iii) the
ToPicto task, which focuses on converting either text or speech into a
meaningful sequence of pictograms and (iv) the Argument-Image task,
which explores the augmentation of arguments using images, by either
retrieval or synthetic generation. This edition of the ImageCLEF bench-
mark attracted 193 teams that registered to the different tasks, of which
56 finished the challenges. This resulted in 493 submitted runs and a to-
tal of 45 working note papers. Overall, this year’s edition has been very
successful, with the biggest number of teams, submissions and working
notes papers since 2019.

Keywords: Medical image processing · Medical image caption analysis ·
Medical concept prediction · Visual question answering · Generative Ad-
versarial Networks · Synthetic Data Generation · Image Segmentation ·
Pictogram communication · Multilingual · Image Retrieval · ImageCLEF

1 Introduction

Since its inception in 2003 [7], ImageCLEF21 has evolved to be one of the most
prominent evaluation initiatives, promoting the evaluation of technologies for
indexing, retrieval of visual data, and facilitating access to large image collections
across a large variety of domains. This paper presents an overview of the 2025
edition of the lab, part of the Conference and Evaluation Forum- CLEF Labs
2025 [5].

Starting from just 4 participants in 2003, the impact of this evaluation cam-
paign grew over the years, amassing thousands of participants, and runs over the
years. The ever-growing impact of ImageCLEF -and also CLEF more broadly
- has been assessed in [24, 25], and is further evidenced by the number of re-
sults for the term ”ImageCLEF” returned by Google Scholar, with over 7900
mentions22 to date. Over the years, ImageCLEF has always adopted emerging
trends, adding tasks of interest, with some of the more recent trends included
in this year’s tasks being the evaluation of Vision-Language Models, Synthetic
Image Generation or AI model Explainability.

21 http://www.imageclef.org/
22 https://scholar.google.com/scholar?q=ImageCLEF



This edition of ImageCLEF features 4 main tasks, with a large diversity of
sub-tasks: ImageCLEFMedical, MultimodalReasoning, ImageCLEFtoPicto and
Image Retrieval/Generation for Arguments.

Fig. 1: Sample images from (left to right, top to bottom): ToPicto, Multimodal-
Reasoning , the GANs task, Image Retrieval/Generation for Arguments, the
Caption task and MEDIQA-MAGIC



2 Overview of Tasks and Participation

ImageCLEF 2025 consists of four main tasks to cover a diverse range of mul-
timedia retrieval, medical applications. It followed the 2019 tradition [14] of
diversifying the use cases [21, 23, 29, 22, 13, 3]. The 2025 tasks are presented as
follows:

– ImageCLEFmedical. Since 2004, the ImageCLEF benchmarking initiative
has included medical tasks. By 2018, however, although nearly all tasks were
medical, there was limited interaction between them. Therefore, starting in
2019, the medical tasks were consolidated into a single medical task, with
multiple subtasks, each handling a separate problem. This approach fostered
synergies between the different domains. The medical task features four sub-
tasks, described below:
• Caption: The 2025 edition marks the nineth iteration of the medical
captioning task [8]. This year, the task was expanded to three subtasks:
the returning concept detection and caption prediction subtasks, and a
newly promoted official explainability subtask. The caption prediction
subtask focuses on composing coherent captions for radiology images,
concept detection on identifying relevant UMLS concepts within those
images, while the new explainability subtask requires participants to
provide human-interpretable justifications for their model’s predictions.

• GANs: This is the third edition of the task [2, 3, 1]. The objective is
to investigate whether synthetic medical images generated by deep gen-
erative models, such as GANs and Diffusion models, retain identifiable
traces of the real data used during training. Addressing critical privacy
and security concerns, the task includes two subtasks: detecting whether
specific real images were used in GAN training, and attributing synthetic
images to the correct training subset. The goal is to assess the potential
for data leakage through “fingerprints” embedded in synthetic outputs

• MEDIQA-MAGIC : The second edition for the MEDIQA-MAGIC [26]
task builds on last year’s challenges [28] using an expanded multimodal
dermatology dataset. Participants receive clinical narratives with related
images and must complete two subtasks: (1) segmenting areas showing
dermatological issues, and (2) answering closed-ended clinical questions
based on the provided context. Test sets are annotated by at least three
annotators. Questions and options are available in both English and
Chinese.

• MEDVQA: Analysis of gastrointestinal (GI) images and videos continues
to be an active research area in both the medical and computer science
communities. Traditionally, most methods have focused on images as a
single modality. The MEDVQA challenge [12] extends this by introduc-
ing a multimodal task that combines image and text data for visual ques-
tion answering (VQA), targeting the field of GI endoscopy. This year, the
challenge includes two subtasks. The first subtask focuses on answering
clinical questions associated with specific images. The second subtask



involves generating synthetic GI images based on prompts describing
anatomical landmarks, visual features, and other relevant findings.

– MultimodalReasoning. This is the first edition of the task. The objective
is to assess how effectively vision-language models can reason over complex
visual and textual exam content. Participants were provided with an image
of a question, including answer options and metadata describing the type of
visual content in the image. Their task was to select a single correct answer
from a set of three to five options. The task combines a vision-language ques-
tion answering problem with multilingualism, with subtasks in 14 languages,
as well as a multilingual challenge.

– ToPicto. This second edition of the ToPicto task challenges participants to
automatically generate pictogram translations from written text and speech.
Participants trained models on a novel multimodal dataset comprising three
aligned corpora. These resources include parallel speech, text, and pictogram
sequences across various domains (medical, general) and settings (read or
spontaneous speech) to support robust cross-modal translation.

– Touché-Argument-Images. This is the fourth edition of the task, which
challenges participants to convey an argument through a single image. Given
a central claim—such as “Martial arts help build confidence” —participants
must either retrieve a relevant image from a dataset or generate one using
an image synthesis tool. The task was conducted in collaboration with the
Touché Lab. Further details are available in their overview paper [15].

Table 1: Key figures regarding participation in ImageCLEF 2025.

Task
Groups that

submitted results
Submitted

runs
Submitted

working notes

GANs 15 105 9
Caption 11 149 10

MultimodalReasoning 11 129 11
MEDIQA-MAGIC 8 82 7

MEDVQA 6 17 5
ToPicto 3 7 2

Argument-Images 2 4 1

In order to participate in the evaluation campaign, the research groups had to
register by following the instructions on the ImageCLEF 2025 web page23. Since
2024, we used our own registration and submission platform24. The Ai4Media
platform allows for registration, data download, and automatic submission and
evaluation of runs. Similar to previous editions, the participants were required
to submit and sign the End User Agreement to access the datasets and submit
runs.
23 https://www.imageclef.org/2025/
24 https://ai4media-bench.aimultimedialab.ro/



Following a drop in participation in 2016, interest in ImageCLEF rebounded
in 2017 and 2018, with another increase observed in 2019. In 2018, 31 teams
completed the tasks, resulting in 28 working notes papers. Participation peaked
in 2019 with 63 teams and 50 submitted papers. In 2020 and 2021, 40 and
42 teams, respectively, completed the tasks, with 30 working notes received in
2021. In 2022, a decline followed, with 28 participating teams and 26 articles.
However, 2023 marked a revival, with 47 teams submitting results and 39 working
notes received. The 2024 edition attracted 26 teams, with a total of 34 working
notes received. This year has seen the biggest number of participants since 2019,
with with 55 teams submitting results and 45 working notes submitted. Table 1
presents the overall participation statistics for this year’s competition.

The following sections present the tasks, outlining the most important points,
like general objectives, description, data sets and results, in short overviews. A
detailed review of the received submissions for each task is provided with the
task extended overview in the CLEF 2025 working notes: Caption [8], GANs [1],
MEDIQA-MAGIC [26], MEDVQA [12], MultimodalReasoning [11], ToPicto [19].

3 The Caption Task

The 9th edition of the ImageCLEFmedical Caption task continues to bench-
mark automatic systems for radiology image understanding. Building on pre-
vious years, the 2025 edition introduced two major changes: the promotion of
explainability to a fully graded subtask alongside concept detection and caption
prediction, and a revised, holistic evaluation methodology for the generated cap-
tions. The task attracted 11 participating teams who submitted a total of 149
graded runs.

3.1 Task Setup

Participants were invited to take part in up to three subtasks:

– Concept Detection: Systems were required to predict a set of Unified Med-
ical Language System® (UMLS) concepts present in an image. Performance
was measured by the F1-score.

– Caption Prediction: Systems had to generate a coherent, full-sentence
caption for an image. A key update for 2025 was the evaluation via a com-
posite score, averaging six metrics (including BERTScore, ROUGE-1, and
AlignScore) to assess both relevance and factuality.

– Explainability: For a small, pre-selected subset of images, teams had to
provide a human-interpretable explanation (e.g., a heat-map or bounding
boxes) justifying their model’s caption. Submissions were manually rated by
a radiologist on a 1-5 Likert scale for criteria such as coherence and clinical
relevance.



3.2 Data Set

The task used an enlarged and updated version of the ROCOv2 dataset, contain-
ing images and captions from the PubMed Central® Open-Access subset. The
final collection comprised 116,635 images, split into training (80,091), validation
(17,277), and test (19,267) sets. A key novelty for 2025 was the introduction of
the optical coherence tomography (OCT) imaging modality, which was retro-
spectively annotated for the entire corpus. UMLS concepts were extracted using
MedCAT and subsequently filtered to ensure a high-quality label space. For the
explainability subtask, a dedicated set of 16 images was manually selected by a
radiologist to cover all modalities.

3.3 Participating Groups and Submitted Runs

The 2025 task attracted 80 registered research groups, from which 11 internation-
ally diverse teams ultimately submitted 149 graded runs. Ten teams submitted
working notes (3 recurring teams). Participation was highest in the caption pre-
diction subtask (8 teams, 98 runs), followed by concept detection (9 teams, 51
runs), and the new explainability subtask (2 teams, 2 runs). Six of the teams
competed in both of the main subtasks.

3.4 Results

In the concept detection task, top-performing teams continued to rely on ensem-
bles of Convolutional Neural Networks (CNNs). The winning submission from
the AUEB NLP Group [6] exemplifies this mature approach. As shown in Ta-
ble 2, while the leading F1-scores were competitive, there was a general decrease
in primary scores compared to previous years. This is attributed to the increased
difficulty and diversity of the 2025 dataset, particularly with the introduction of
the OCT modality.

Table 2: Best-run performance of participating teams in the concept detection
subtask, ranked by primary F1-score.

Group Name F1 Secondary F1 Rank (secondary)

AUEB NLP Group 0.5888 0.9484 1 (1)
DeepLens 0.5766 0.9299 2 (2)
mapan 0.5660 0.9298 3 (3)
UIT-Oggy 0.5613 0.9104 4 (4)
DS4DH 0.5225 0.8672 5 (6)
sakthiii 0.4003 0.9082 6 (5)
JJ-VMed 0.3982 0.8329 7 (7)
UMUTeam 0.2398 0.5377 8 (8)
LekshmiscopeVIT 0.1494 0.2298 9 (9)

The caption prediction subtask saw a clear and universal shift towards fine-
tuning large Vision-Language Models (VLMs). The winning team, UMUTeam [20],



used a fine-tuned BLIP architecture to achieve the best overall score. The re-
sults from the new composite metric, summarized in Table 3, highlight that
while top systems could generate highly relevant captions, achieving high fac-
tuality scores proved challenging for all participants. Notably, a baseline model
using an off-the-shelf instruction-tuned LLM (Llama 4 Scout) performed com-
petitively, placing in the middle of the rankings and even outperforming some
submissions on specific metrics.

Table 3: Best-run performance of participating teams in the caption prediction
subtask, ranked by the new composite Overall score.

Group Name Overall Relevance Factuality Rank (Rel./Fact.)

UMUTeam 0.3432 0.5268 0.1596 1 (1/1)
DS4DH 0.3362 0.5174 0.1549 2 (2/2)
AI Stat Lab 0.3229 0.5089 0.1369 3 (3/3)
UIT-Oggy 0.3211 0.5076 0.1346 4 (4/4)
AUEB NLP Group 0.3068 0.4759 0.1377 5 (6/5)
JJ-VMed 0.3043 0.4922 0.1165 6 (5/6)
sakthiii 0.2746 0.4481 0.1011 7 (7/7)
CS Morgan 0.2315 0.3717 0.0917 8 (8/8)

Baseline (Llama 4 Scout) 0.3101 0.5073 0.1128

Finally, the inaugural explainability task saw participation from two teams.
The manual evaluation by a radiologist revealed that both teams generated
plausible visualizations (e.g., bounding boxes). However, these explanations were
created using external, post-hoc models and did not provide insight into the
internal reasoning of the captioning models themselves.

3.5 Lessons Learned and Next Steps

The 2025 task yielded several important insights for the field. First, while com-
plex pipelines like Retrieval-Augmented Generation (RAG) were explored, the
top results in captioning came from direct and robust fine-tuning of strong VLM
backbones, suggesting that pipeline complexity can be a weakness if components
are not perfectly optimized. Second, the new composite score proved to be a
successful evolution, giving a more balanced view of caption quality. Its results
clearly pinpoint clinical factuality as the next major frontier for research, as
relevance scores now consistently outperform factuality scores.

The most critical lesson came from the new explainability task. The reliance
of participants on post-hoc, external models highlights a need for the community
to focus on developing and evaluating model-intrinsic explanation methods (e.g.,
attention maps, GradCAM) that can surface the actual features the generative
model used, which is essential for building clinical trust.

Based on these lessons, the following steps are planned for the 2026 challenge:



– Mature the Explainability Task: Future guidelines will strongly encour-
age the submission of model-intrinsic explanations to better align the task
with the goal of building trustworthy AI.

– Expand and Enrich the Dataset: The dataset will be expanded again
with new articles. To address multilinguality, previously omitted non-English
captions will be machine-translated and incorporated. Furthermore, for im-
ages that lack a caption, a baseline will be generated using the wider article
context, providing a new type of training data.

4 The GANs Task

4.1 Task Setup

The third edition of the ImageCLEFmedical 2025 GANs task [1] builds on the
first two editions [2, 3], continuing the exploration of privacy and security con-
cerns in synthetic medical imaging. The task is organized into two subtasks:

– Subtask 1: Detect Training Data Usage – Participants had to determine
whether specific real images were used in training a Generative Adversarial
Network (GAN) that produced a given set of synthetic images.

– Subtask 2: Identify Training Data Subsets – The goal was to link each
synthetic image generated by a Diffusion model to its corresponding training
subset among five predefined groups.

4.2 Data Set

The benchmarking datasets used in the GANs Task focused on computed to-
mography (CT) images spanning several anatomical regions relevant to medical
imaging research. In Subtask 1, the data comprised thoracic CT axial slices
originating from patients with lung tuberculosis. These slices presented a wide
range of visual characteristics, from normal appearing lungs to scans with se-
vere pulmonary lesions. Synthetic images were generated using a GAN trained
on a subset of these real thoracic scans. In Subtask 2, the dataset extended to
include cervical and abdominal CT slices, in addition to thoracic regions. This
subtask leveraged a Diffusion-based generative model. All images, both real and
synthetic, were standardized in format and resolution, enabling consistent eval-
uation across both subtasks while reflecting realistic clinical heterogeneity in
organ appearance and pathology.

4.3 Participating Groups and Submitted Runs

Overall, 41 teams registered for our task. Of these, 14 teams completed the
first subtask by submitting runs, and 4 teams completed the second subtask. In
total, 9 teams submitted working notes papers. Notably, 2 teams participated
in both subtasks, including the task organizing team. The continued interest in



the first subtask, now in its third edition, highlights its ability to attract more
participating teams.

Each participating team was allowed to submit up to 10 runs per task. We
received a total of 105 submitted runs: 91 for Subtask 1 and 14 for Subtask 2.

4.4 Results

The rankings for Subtask 1 are shown in Table 4, and those for Subtask 2 are
presented in Table 5, limited to the teams that described their methods by
submitting working notes papers.

Table 4: Results of participant submissions and their results for Subtask 1: Detect
Training Data Usage.

# Participant Run ID
Cohen’s
kappa

Accuracy Precision Recall F1

1 Neural Nexus 1878 0.148 0.574 0.5698 0.604 0.5864
2 zhouyijiang1 1803 0.136 0.568 0.5582 0.652 0.6015
3 zhouyijiang1 1804 0.136 0.568 0.5582 0.652 0.6015
4 zhouyijiang1 1873 0.136 0.568 0.5582 0.652 0.6015
5 zhouyijiang1 1802 0.132 0.566 0.5537 0.68 0.6104
6 zhouyijiang1 1801 0.128 0.564 0.55 0.704 0.6175
7 Neural Nexus 1880 0.072 0.536 0.5542 0.368 0.4423
8 taotaozi 1359 0.064 0.532 0.5597 0.3 0.3906
9 taotaozi 1367 0.044 0.522 0.5505 0.24 0.3343
10 AIMultimediaLab* 1696 0.036 0.518 0.5162 0.572 0.5427
11 taotaozi 1364 0.032 0.516 0.6 0.096 0.1655
12 Neural Nexus 1881 0.032 0.516 0.5222 0.376 0.4372
13 taotaozi 1360 0.032 0.516 0.5128 0.64 0.5694
14 Neural Nexus 1877 0.028 0.514 0.5164 0.44 0.4752
15 taotaozi 1366 0.02 0.51 0.5069 0.732 0.599
16 Neural Nexus 1872 0.016 0.508 0.5182 0.228 0.3167
17 Medhastra 1288 0.016 0.508 0.5078 0.52 0.5138
18 taotaozi 1368 0.012 0.506 0.5092 0.332 0.4019
19 Challengers 1811 0.012 0.506 0.5062 0.492 0.499
20 ZOQ 1427 -0.016 0.492 0.4905 0.412 0.4478
21 Neural Nexus 1879 -0.024 0.488 0.4732 0.212 0.2928
22 Neural Nexus 1882 -0.028 0.486 0.4646 0.184 0.2636
23 ZOQ 1355 -0.032 0.484 0.4904 0.82 0.6138
24 SCOPE VIT Visioneers 1160 -0.032 0.484 0.4831 0.456 0.4691
25 Challengers 1779 -0.032 0.484 0.4355 0.108 0.1731
26 AIMultimediaLab* 1492 -0.044 0.478 0.4829 0.62 0.5429
27 ZOQ 1330 -0.068 0.466 0.4822 0.92 0.6327
28 ZOQ 1794 -0.068 0.466 0.4822 0.92 0.6327
29 taotaozi 1369 -0.096 0.452 0.4657 0.652 0.5433
30 Challengers 1778 -0.116 0.442 0.4461 0.48 0.4624
31 ZOQ 1356 -0.132 0.434 0.3862 0.224 0.2835
32 Challengers 1776 -0.176 0.412 0.3764 0.268 0.3131
33 Challengers 1777 -0.176 0.412 0.3764 0.268 0.3131

Subtask 1, which asked participants to detect whether a specific real image
was used in the training process of a GAN, proved to be highly challenging. De-
spite the use of a wide range of techniques, including Siamese neural networks,
contrastive learning, supervised classifiers, clustering approaches, and advanced
Vision Transformer-based architectures, overall performance remained modest.



The best result was achieved by the Neural Nexus team, whose ViT-based au-
toencoder pipeline reached a Cohen’s kappa score of 0.148, with others, such as
zhouyijiang1, achieving slightly lower but consistent scores around 0.13. Most
submissions hovered close to or below zero, suggesting that models struggled
to extract any reliable signal beyond chance. This low inter-rater agreement,
measured via Cohen’s kappa, underscores the difficulty of the task and possibly
reflects that the GAN used in this edition was effective in generating images
without obvious “fingerprints” of the training data.

In contrast, Subtask 2, which required participants to attribute synthetic
images to their corresponding training subset of real data, showed substantially
higher performance. Multiple teams reached classification accuracies above 98%,
demonstrating that although image-level membership inference remains difficult,
coarse-grained attribution at the dataset level is more tractable. The highest per-
formance was recorded by SDVAHCS/UCSD, whose ensemble-based approach
using EfficientNet architectures and pseudo-labeling,achieved up to 98.8% accu-
racy. Medhastra, using a simpler ResNet-18 classifier, also performed well with
an accuracy of 94.84%, proving that even relatively lightweight models can be
effective for this task when well-tuned.

Table 5: Results of participant submissions and their results for Subtask 2: Iden-
tify Training Data Subsets.

# Participant Run ID Accuracy Precision Recall F1 Specificity
1 AIMultimediaLab* 1396 0.9904 0.9904 0.9904 0.9904 0.9972
2 SDVAHCS/UCSD 1782 0.988 0.9882 0.988 0.9881 0.9969
3 SDVAHCS/UCSD 1871 0.988 0.9882 0.988 0.9881 0.9969
4 SDVAHCS/UCSD 1883 0.988 0.9882 0.988 0.9881 0.9969
5 SDVAHCS/UCSD 1426 0.9878 0.9881 0.9878 0.988 0.9969
6 SDVAHCS/UCSD 1425 0.9708 0.9716 0.9708 0.9711 0.9931
7 Medhastra 1287 0.9484 0.9504 0.9484 0.9487 0.9879
8 AIMultimediaLab* 1268 0.5236 0.5982 0.5236 0.5327 0.8799
9 AIMultimediaLab* 1269 0.4913 0.5822 0.4913 0.4934 0.8744
10 AIMultimediaLab* 1271 0.4904 0.5691 0.4904 0.4832 0.8753
11 AIMultimediaLab* 1267 0.4112 0.4645 0.4112 0.3945 0.8547

4.5 Lessons Learned and Next Steps

The 2025 ImageCLEFmedical GANs Task provided valuable insights into the
privacy implications of synthetic medical image generation. Subtask 1, which
focused on detecting whether specific real images were used to train a GAN,
proved especially challenging. Despite using advanced techniques, participant
systems performed close to random, with the best Cohen’s kappa reaching only
0.148. This suggests that, under the conditions of this task, the proposed GAN
generated images that were effectively free from directly traceable “fingerprints”.
While this is promising from a privacy perspective, it also reflects the limitations
of current detection methods.



Subtask 2, in contrast, yielded significantly better results. Several teams
achieved accuracies above 98%, showing that dataset-level attribution remains
feasible. Successful methods employed supervised classification, deep feature em-
beddings, and semi-supervised learning strategies like pseudo-labeling. These re-
sults imply that while image-level membership inference is difficult, generative
models may still retain broader signals from the source data distributions.

The differing outcomes of the two subtasks underscore the need to evalu-
ate both model type and attribution level when assessing privacy risks. Moving
forward, future task editions aim to explore new modalities, expand to multi-
modal generative data, and introduce more challenging attribution and privacy-
preservation tasks.

5 The MEDIQA-MAGIC Task

In the second MEDIQA-MAGIC task [26], we extend on the previous year’s
dataset [31] and challenges [28, 27] based on multimodal dermatology response
generation. In this edition, participants were asked to identify areas of interest in
an image based on the patient’s query, e.g. the rash on an arm, as well as provide
answers to structured closed-ended questions, e.g. is there single or multiple
lesions. These are critical subtasks that can be used to improve end-to-end free
text response generation, the subject of the original 2024 challenge.

5.1 Task Setup

Similar to the previous edition, participants were given a clinical narrative con-
text along with accompanying images. The task was divided into two relevant
sub-parts: (i) segmentation of dermatological problem regions, and (ii) providing
answers to closed-ended questions. The questions, answers, and answer options
were given in both English and Chinese.

In the first sub-task, given each image and the clinical history, participants
are tasked generating segmentations of the regions of interest for the described
dermatological problem. The expected outputs are binary image files with the
same size as the original image. To leverage multiple gold standard masks for
segmentation, we use the majority vote by pixel as the gold standard for mi-
croscore calculations of Jaccard and Dice Index. However, we also calculate the
mean of the per-instance max and mean.

In the second sub-task, participants were given a patient dermatological
query, its accompanying images, as well as a closed-question with accompany-
ing choices – the task is to select the correct answer to each closed question.
Because the same dermatological problem may have multiple sites, there may
be related questions (e.g. what is the size of the affected area for location 1,
what is the size of the affected area for location 2). In these cases, the an-
swers to the same related questions are collated together. Partial credit is given
when there are partial matches to gold. The exact code can be found here:
github.com/wyim/ImageCLEF-MAGIC-2025.



5.2 Data Set

The dataset was created by using real consumer health users’ queries and images;
the question schema was created in collaboration with two certified dermatolo-
gists. In total closed question schema - a comprehensive list of clinically relevant,
patient-facing questions for dermatological assessments included a total of 137
questions. For the challenge, we tested for total of 27 questions, for which were
most common and can use both text and images to answer. These corresponded
to 9 overall questions when related questions are grouped (e.g. anatomic re-
gion for affected area 1, anatomic region for affected area 2). The answers were
labeled by at least 3 annotators: 2 medical scribe annotators, 1 biomedical in-
formatics graduate student. Questions and answers were translated into Chinese
by a native Chinese speaker. Full details can be found in our dataset paper [30]

Congruent with the MEDIQA-M3G edition [27], there was a total of 300, 56,
and 100 instances for train, valid, and test splits respectively. Each query had
on average 3 images.

5.3 Participating Groups and Submitted Runs

Fifty three teams registered for the event. A total of 56 completed valid runs
across 6 teams were submitted. Table 6 provides a list of partipating teams and
affiliations. This year’s primary participants came from academia from United
States, Vietnam and India.

Table 6: Participating Teams in the MEDIQA-MAGIC 2025 Challenge

Team Institution Affiliation
DS@GT United States Georgia Institute of Technology
H3N1 Vietnam University of Information Technology
Kasukabe Defense Group India KLE technological university
Anastasia Vietnam Universiy of Information Technology
IReL, IIT(BHU) India Indian Institute of Technology(BHU)
KLE1 India KLE Technological University
Oggy Vietnam University of Information Technology

5.4 Results

Table 7 shows results for the segmentation tasks. Despite different calculations
of jaccard and dice metrics, both given identical rankings. Table 8 shows results
for the segmentation task.

In the segmentation subtask, all four teams took a fine-tuning approach with
differences in the exact models employed (e.g. TransUNet, ViT-B, CLIP). The
Anatasia team enriched the dataset by performing image transformation tech-
niques (e.g. rotations, contrast etc) and were able to achieve top performances
after including data with all transformations. The IReL, IIT(BHU) team was the
only team that attempted to incorporate textual features. Their strategy used



Table 7: Performance of the participating teams in the MEDIQA 2025 Subtask 1
on segmentation generation for dermatological problems. Duplicate submission
scores are removed.

team jaccard dice
Anastasia 0.6458 0.7848
Anastasia 0.6113 0.7587

IReL, IIT(BHU) 0.5881 0.7407
KLE1 0.5410 0.7021
H3N1 0.5145 0.6794

Anastasia 0.3205 0.4855
Anastasia 0.3129 0.4766

Kasukabe Defense Group 0.1866 0.3145

Table 8: Performance of the participating teams in the MEDIQA 2025 Subtask
2 on closed question answering. Duplicate submission scores are removed.

team CQID010 CQID011 CQID012 CQID015 CQID020 CQID025 CQID034 CQID035 CQID036 ALL

H3N1 0.7 0.89 0.77 0.91 0.69 0.97 0.45 0.86 0.58 0.76
H3N1 0.64 0.89 0.76 0.87 0.71 0.96 0.47 0.85 0.6 0.75
H3N1 0.67 0.74 0.72 0.93 0.69 0.98 0.49 0.87 0.62 0.75
H3N1 0.64 0.88 0.76 0.85 0.73 0.9 0.46 0.86 0.54 0.74

DS@GT MEDIQA-MAGIC 0.53 0.87 0.66 0.81 0.56 0.89 0.6 0.81 0.65 0.71
DS@GT MEDIQA-MAGIC 0.51 0.84 0.7 0.85 0.56 0.87 0.55 0.81 0.67 0.71
DS@GT MEDIQA-MAGIC 0.47 0.86 0.69 0.85 0.56 0.84 0.51 0.82 0.64 0.69
DS@GT MEDIQA-MAGIC 0.44 0.84 0.69 0.78 0.55 0.86 0.48 0.79 0.65 0.68
DS@GT MEDIQA-MAGIC 0.49 0.82 0.63 0.74 0.56 0.79 0.51 0.75 0.59 0.65

KLE1 0.51 0.63 0.75 0.57 0.63 0.56 0.39 0.74 0.35 0.57
KLE1 0.47 0.62 0.7 0.58 0.62 0.56 0.36 0.76 0.3 0.55

Kasukabe Defense Group 0.44 0.66 0.75 0.28 0.66 0.44 0.52 0.77 0.3 0.54
Kasukabe Defense Group 0.4 0.61 0.73 0.29 0.65 0.44 0.52 0.76 0.33 0.53
Kasukabe Defense Group 0.49 0.49 0.67 0.32 0.48 0.41 0.01 0.76 0.55 0.46

DS@GT MEDIQA-MAGIC 0.31 0.38 0.53 0.31 0.31 0.42 0.01 0.72 0.37 0.37
Oggy 0.08 0.26 0.45 0.3 0.02 0.35 0.02 0.03 0.48 0.22

IReL, IIT(BHU) 0 0.44 0.48 0.17 0.44 0 0.02 0 0 0.17

CLIP to embed both text and visual features then afterwards fed the combined
feature vector into a binary classification to predict the mask. The remaining
teams fine-tuned previously trained skin lesion segementation models; the H3N1
team use the DermoSegDiff model, whereas the KLE1 team fine-tuned a Multi-
Scale Feature Fusion Network model. Though these models were trained for skin
lesions, likely more fine-tuning was required to completely adapt the model to
this new dataset.

In the closed question-answering subtask, the top two performing teams
H3N1 and DSGT employed multi-step architectures, including both fine-tuned
models and LLM API’s and ensembling methods. The former separated that
task into four parts: (1) preprocessing, (2) information enrichment via image
captioning, (3) fine-tuning and external API calls, (4) ensembling models from
the previous step. The latter similarly had several layers (1) LLM fine-tuning
with different models e.g. Qwen and LLAMA, (2) reasoning layer over output of
(1) using Gemini, and (3) and agent layer that additionally has a RAG to refer-
ence the LanceDB dermatology corpus. In contrast, the other remaining groups
had similar approaches, which utilized encoders for the images and text, then



after fusing both text and image features, the network would eventually be fed
into a classification layer.

5.5 Lessons Learned and Next Steps

In the segmentation task, the most successful system were able to use data
augmentation generated through image transformation techniques (e.g. color
contrast changes). This is promising as other teams did experiment with skin
lesion segmentation specific models however were not able to achieve as high
results – suggesting more data would be required to adapt those models. The
use of textual inputs was only tested by one group, suggesting that this is an
area for future exploration.

In the closed QA task, we found the best systems included multiple models
fine-tuned for the task as well as some ensembling and aggregation. The use
of multi-modal large language models were critically more successful than the
suite of fine-tuned multimodal approaches which relied on a shared embedding
representation then trained to fine-tune on the classification task. This could be
because the current dataset is relatively small thus the important of the large
language models’ access to external information became a determining factor.

This edition implemented both subtasks simultaneously, simplifying organi-
zation but resulting in many repeat submissions with changes to only one sub-
task. Future improvements could include platform support for concurrent phases.
Most submissions came from academia; future efforts will focus on expanding
industry participation.

6 The MedVQA Task

The third edition of the MedVQA challenge at ImageCLEF continued to em-
phasize the application of image-based machine learning in gastrointestinal (GI)
screening. In this edition, the scope of the challenge was broadened to include
two key subtasks from the previous two years: visual question answering (VQA)
and text-to-image synthesis. Five teams participated who submitted a total of
eight runs. An overview can be seen in Figure 9.

6.1 Task Setup

This year, we organized two subtasks to evaluate different capabilities of ma-
chine learning models in gastrointestinal (GI) imaging. Subtask 1 focused on

Table 9: An overview of the submissions to each task at MedVQA-GI.

MedVQA 2023 MedVQA 2024 MedVQA 2025

# Registrations 26 22 31
# Task Participation 8 2 5
# Paper Submissions 6 2 5



answering clinical questions associated with annotated images from the chal-
lenge development dataset. Models were required to combine visual recognition,
such as identifying tools, anatomical structures, or pathological features, with
basic language understanding. Subtask 2 involved generating synthetic GI im-
ages from structured prompts describing anatomical locations, visual features,
or the presence of tools. The goal was to produce images that resembled real
endoscopic data and could be used for training or evaluating diagnostic models.
Submissions for both subtasks were managed through a Hugging Face repository
to ensure standardization and comparability across teams.

6.2 Data Set

The dataset used in this challenge is based on the publicly available HyperKvasir
and Kvasir-VQA datasets, which include gastrointestinal endoscopy images from
various anatomical sites and pathological conditions. For Subtask 1, the devel-
opment set contained over 6,500 images from Kvasir-VQA, each annotated with
one or more visual questions and corresponding answers. The questions fell into
categories including Yes/No, Single-Choice, Multiple-Choice, Color, Location,
and Count, targeting tasks like classification, reasoning, spatial localization, and
attribute recognition. The test set introduced a distribution shift by using pre-
viously unreleased images from different sources. For Subtask 2, participants
were given more than 2,000 image-caption pairs summarizing clinically relevant
content such as anatomical features, abnormalities, or procedural elements. To
increase variation and reduce overfitting, synthetic captions were also provided,
generated using large language models and rule-based techniques. The test set
for Subtask 2 was drawn from a separate, mixed-source dataset not included in
the training data to support evaluation in unfamiliar clinical settings.

6.3 Results

Five teams submitted results for Subtask 1, and three teams participated in
Subtask 2. In Subtask 1 (Table 10), IReL IIT BHU ranked first overall based on
top scores across ROUGE and METEOR on the private set. UPS was the runner-
up, with the highest BLEU score on the public set and strong performance on
other metrics. In Subtask 2 (Table 11), CS Morgan Lab achieved the best overall
performance, ranking first in FID, diversity, and FBD. IReL IIT BHU was the
runner-up, with the highest agreement score and good scores on other metrics.

6.4 Lessons Learned and Next Steps

Most teams in Subtask 1 used transformer-based multimodal architectures, with
Florence2 being the most common, fine-tuned using LoRA along with input
augmentation and hyperparameter tuning. In Subtask 2, three teams submitted
models based on fine-tuned variants of Stable Diffusion, also using LoRA. Al-
though the generated images had high visual fidelity, prompt-image alignment



Table 10: Results for Task 1.

Team Set BLEU R1 R2 RL MET

UPS Public 0.24 0.87 0.11 0.87 0.48
UPS Private 0.22 0.88 0.11 0.88 0.49
IReL IIT BHU Public 0.23 0.83 0.10 0.83 0.46
IReL IIT BHU Private 0.22 0.92 0.11 0.92 0.50
MedPixel Public 0.21 0.87 0.12 0.86 0.48
MedPixel Private 0.18 0.91 0.11 0.90 0.50
CS Morgan Lab Public 0.19 0.84 0.10 0.83 0.46
CS Morgan Lab Private 0.18 0.90 0.10 0.90 0.49
Sagarmatha Rangers Public 0.15 0.81 0.10 0.80 0.44
Sagarmatha Rangers Private 0.16 0.88 0.10 0.88 0.49

Table 11: Results for Task 2.

Team Set Fid. Agrmt. Div. FBD

CS Morgan Lab Private 0.0268 0.7012 0.7017 1539.31
IReL IIT BHU Private 0.2739 0.7390 0.6481 1694.97
MedPixel Private 0.2725 0.7329 0.6722 1694.00

was inconsistent, and clinically accurate features were often missing. While more
teams registered than last year, final submission numbers remained low. Subtask
2 may benefit from improved baselines, clearer instructions, and more human-
in-the-loop evaluation.

7 The MultimodalReasoning task

7.1 Task Setup

The task focused on visual question answering for multiple-choice questions with
exactly one correct answer, where the answer options could also include visual
content. It was conducted in two phases: an exploration phase, during which par-
ticipants familiarized themselves with the publicly available training and valida-
tion data [9], followed by a test phase. In the test phase, images of the questions
from the test dataset were released along with metadata describing the visual
components within the questions. Participants submitted results to 14 different
leaderboards: one multilingual leaderboard and 13 individual leaderboards, one
for each language. Participants were allowed to make multiple submissions dur-
ing this phase, but no feedback was provided. Final rankings were determined
based on each participant’s last submission at the end of the test phase.

7.2 Data Set

The dataset used in this challenge is based on the publicly available Exams-
V dataset [9], which includes 20,932 multiple-choice questions across 20 school
disciplines, covering 11 languages from 7 language families. Each question had
from three to five answer options, with a single correct answer. The test set



introduced new questions from more recent graduate exams. Table 12 shows
general statistics on the test set, which contains a total of 3,565 new questions.
Additionally, three new languages were introduced, Urdu, Kazakh, and Spanish,
challenging participants to explore approaches for zero-shot question answering.

Table 12: New test data statistics. Here, #visual Q. refers to questions with
multimodal context and #text Q. refers to text-only questions. *Urdu, Kazakh,
and Spanish are new languages, with no training/validation data from Exams-V.

Language ISO Family Grade #Subj. #Questions #visual Q. #text Q.

English en Germanic 12 1 512 62 450
Chinese zh Sino-Tibetan 12 4 407 0 407
German de Germanic 12 6 258 68 190
Italian it Romance 12 5 203 58 145
Arabic ar Semitic 10-12 4 222 164 58
Polish pl Slavic 12 7 259 104 155
Hungarian hu Finno-Ugric 12 6 247 30 217
Bulgarian bg Slavic 12 6 200 66 134
Croatian hr Slavic 12 5 203 58 145
Serbian sr Slavic 12 5 203 58 145

Urdu* ur Indo-Aryan 9-10 5 269 0 269
Kazakh* kk Turkic 11 4 243 84 159
Spanish* es Romance 12 10 339 209 130

7.3 Participating Groups and Submitted Runs

In the first edition of the Multimodal Reasoning task, 51 participants registered,
with 11 teams participating in the test set, resulting in a total of 129 graded sub-
missions. All 11 teams submitted working notes. The most popular leaderboards
were English, Multilingual, and Chinese, with 10, 9, and 7 teams participating,
respectively. Some teams participated in multiple leaderboards, with two teams
submitting to all 14 and another two teams submitting to 13. Teams came from
5 different countries: Bulgaria, China, India, Egypt, and Pakistan.

7.4 Results

Table 13 shows the results on all 14 leaderboards for the Multimodal reasoning
task. Participants significantly outperformed the baseline, except one team that
opted for the same model as the baseline. The task proved to be of moderate
difficulty, with some teams achieving over 90% accuracy. Team seifahmed ex-
celled across the board, securing first place in 11 out of the 13 leaderboards they
competed in.

7.5 Lessons Learned and Next Steps

In the first edition of the Multimodal Reasoning task, we observed a lot of
interest, with registration numbers being similar to other established tasks under



Table 13: Results for the ImageCLEF 2025 Multimodal Reasoning task on all
14 leaderboards. Baseline system submitted by the organizers. In the case of
equal scores, participants are assigned the same rank and ordered alphabetically.
†Participants submitted as different teams, but wrote a single working notes
paper as co-authors.

Rank Team Acc Rank Team Acc Rank Team Acc
Multilingual English Bulgarian

1 seifahmed 0.8140 1 stormhunter44† 0.8965 1 heavyhelium† 0.9050

2 ymgclef 0.5994 2 seifahmed 0.8652 1 stormhunter44† 0.9050
3 lekshmiscopevit 0.5770 3 ayeshaamjad 0.8125 2 ymgclef 0.7750

4 bingezzzleep 0.5619 4 heavyhelium† 0.8086 3 bingezzzleep 0.7500
5 plutohbj 0.5226 5 ymgclef 0.5938 3 seifahmed 0.7500
6 deng113abc 0.5195 6 deng113abc 0.5371 4 plutohbj 0.7300
7 mhl2001 0.4418 7 bingezzzleep 0.5312 5 baseline 0.2450
8 yaozihang 0.4376 8 plutohbj 0.4922 6 elenat 0.2350
9 baseline 0.2701 9 mhl2001 0.4629 German
10 elenat 0.2188 10 yaozihang 0.4570 1 seifahmed 0.8915

Kazakh 11 elenat 0.2520 2 ymgclef 0.7403
1 seifahmed 0.8148 12 baseline 0.2480 3 bingezzzleep 0.6860
2 ymgclef 0.5350 Chinese 4 plutohbj 0.6783
3 bingezzzleep 0.4938 1 seifahmed 0.8305 5 yaozihang 0.4961
4 plutohbj 0.4444 2 ayeshaamjad 0.6560 6 mhl2001 0.4922
5 baseline 0.2738 3 plutohbj 0.5921 7 baseline 0.3101

Polish 4 bingezzzleep 0.5799 Urdu
1 seifahmed 0.8224 5 mhl2001 0.5553 1 seifahmed 0.8067
2 ymgclef 0.7181 6 ymgclef 0.5283 2 ymgclef 0.3941
3 bingezzzleep 0.5792 7 yaozihang 0.4791 3 bingezzzleep 0.3569
4 plutohbj 0.5251 8 baseline 0.2678 3 yaozihang 0.3569
5 baseline 0.2934 Arabic 4 baseline 0.3011

Italian 1 seifahmed 0.6757 Croatian
1 seifahmed 0.9212 2 ayeshaamjad 0.4775 1 seifahmed 0.9507
2 bingezzzleep 0.6059 3 mhl2001 0.4730 2 bingezzzleep 0.6207
2 plutohbj 0.6059 4 ymgclef 0.4324 3 ymgclef 0.5764
3 ymgclef 0.6010 5 plutohbj 0.3514 4 plutohbj 0.5616
4 baseline 0.2414 6 bingezzzleep 0.3243 5 baseline 0.2709

Spanish 7 baseline 0.2703 Serbian
1 seifahmed 0.7198 Hungarian 1 seifahmed 0.7143
2 ymgclef 0.6696 1 ymgclef 0.6518 2 bingezzzleep 0.6059
3 bingezzzleep 0.6608 2 bingezzzleep 0.5425 3 ymgclef 0.5468
4 plutohbj 0.5723 3 plutohbj 0.4696 4 plutohbj 0.5320
5 baseline 0.3156 4 mhl2001 0.3563 5 baseline 0.2365

5 baseline 0.2348

the same lab. Participating teams opted to use a combination of proprietary
and open-source large VLMs, including Qwen2.5-VL, Gemini, SmolVLM, and
Deepseek. The majority of approaches employed zero-shot or few-shot techniques
and leveraged metainformation about visual elements. There were some fine-
tuning submissions, but these generally underperformed, primarily due to the use
of smaller models constrained by limited resources. The most widely used models
were Gemini-2.5 and Qwen2.5-VL, with the former consistently outperforming
across all leaderboards, showing that the most recent advances in reasoning
models can compete on graduate exams with complex visual elements.



8 The ToPicto task

The second edition of the ToPicto task focuses on the automatic generation
of pictogram translations from two input modalities: written text and speech.
This challenge introduces a novel multimodal dataset to support the training of
machine learning models in a cross-modal translation setting.

Compared to the first edition, the dataset has been significantly extended to
include a wider variety of acoustic domains (from read to spontaneous speech)
and a broader set of thematic domains, including both medical and everyday-
life contexts. Participants were tasked with building models that can generalize
effectively and perform robustly across these diverse conditions.

8.1 Task Setup

The ToPicto 2025 task consists of two sub-tasks: Text-to-Picto and Speech-to-
Picto. Participants were allowed to submit to one or both sub-tasks, with a
maximum of 10 submissions in total.

– Subtask 1: From Text to Pictogram Sequence – The Text-to-Picto
sub-task focuses on the automatic generation of a corresponding sequence of
pictogram terms from a French text.

– Subtask 2: From Speech to Pictogram sequence – The Speech-to-
Picto sub-task focuses on two modalities: speech and pictograms, and aims
to directly map a speech input to pictogram concepts.

8.2 Data Set

The benchmarking data are curated from three aligned multimodal corpora:
Propicto-commonvoice, Propicto-orféo, and Propicto-eval [16–18]. Propicto-commonvoice
is based on the French portion of CommonVoice v15 [4], containing 967 hours of
read speech from 17,911 speakers, with pictogram sequences generated using the
method described in [16]. Propicto-orféo, built from the CEFC corpus [10], con-
sists of 233 hours of spontaneous speech from various domains and interaction
types, with corresponding pictogram translations. Propicto-eval is a controlled
evaluation set with multi-speaker read speech derived from children’s stories,
everyday scenarios, and medical texts, intended to assess model performance
across different content domains.

8.3 Participating Groups and Submitted Runs

In 2024, a total of 16 teams participated in the ToPicto challenge, and four
teams completed the Text-to-Picto task and submitted their results. In 2025, a
total of 41 teams participated in the ToPicto challenge and registered for both
tasks. Only three teams completed the Text-to-Picto task (with 4 runs), and one
team completed the Speech-to-Picto task (with 2 runs). Two teams merged their
contributions for final submissions, resulting in two working notes provided.



8.4 Results

Table 14 shows the different submission results. Note that majahj and indira
collaborated on both tasks and submitted a single working note.

Table 14: Performance of participating teams in the ToPicto 2025 task. Scores
for sacreBLEU, METEOR, and PictoER are reported and ordered by the highest
sacreBLEU score.

Sub-Task Team Name SacreBLEU↑ METEOR↑ PictoER (%)↓ Rank

Text-to-Picto

majahj 76,98 88,66 13,48 1

sudharshan07 69,01 85,09 18,56 2

indira 52,41 74,50 29,23 3

indira 37,72 64,61 42,70 4

Speech-to-Picto
majahj 62,87 73,41 29,49 1

majahj 54,71 65,90 40,02 2

8.5 Lessons Learned and Next Steps

In 2025, we observed a significant increase in registrations; however, only two
teams submitted final working notes. Both teams conducted their work seriously
and presented interesting results on the fine-tuning of Large Language Models
for the pictogram translation task. One team focused on analyzing the impact of
model size and number of training epochs, while the other designed a lightweight
architecture tailored to the source language. For the next steps, emphasizing the
place of this task in the NLP domain and providing participants with more
documentation on pictograms should attract a wider range of profiles and more
diverse solutions for solving both proposed tasks.

9 Conclusion

This paper presents the overview of the ImageCLEF 2025 benchmarking cam-
paign. We introduce the four main tasks, introducing interesting challenges in
medicine (caption analysis, medical data generation and assessment, medical im-
age segmentation for question answering, visual question answering), multimodal
and multilingual question answering, pictogram to text and audio translation
and image retrieval/generation for arguments.

The majority of the approaches by the participants were deep learning-based.
In the ImageCLEF Medical-Caption task, the top-performing teams used Con-
volutional Neural Networks for the Concept detection sub-task, as well as Vision-
Language Models, for the Caption prediction problem. For the GANs task, the
participating teams used a wide array of machine learning models, with a Vi-
sion Transformer architecture achieving the best results on the first subtask.



For the second subtask, multiple teams achieved a performance over 98% us-
ing deep learning approaches. For MEDIQA-MAGIC, the participants relied
on Large Language Models. In the MedVQA task, the majority of teams used
transformer-based architectures for the first subtask, while Stable Diffusion mod-
els were widely used in the second one. For the newly introduced Multimodal
Reasoning task, most of the approaches used a combination of proprietary and
open-source Vision Language Models, while employing zero-shot or few shot
techniques. For ToPicto, the translation of text to pictograms was done using
Large Language Models.

ImageCLEF continues to serve as a platform for innovation, learning, and ad-
vancement across a wide range of fields. Future editions will focus on enhancing
existing tasks, expanding into new domains, attracting more participants, and
fostering experimentation and learning in emerging areas. Addressing current
limitations—such as clarifying task descriptions, allocating resources effectively,
refining evaluation metrics, and exploring new assessment methods and collab-
oration opportunities—will also be a priority. Our goal remains to continually
raise the quality of this benchmarking campaign and contribute meaningfully to
progress in the field.
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